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3Department of Psychology, Università degli Studi di Torino, Via Giuseppe Verdi, 10, 10124 Torino, Italy
4Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center
Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
5These authors contributed equally
6Lead contact

*Correspondence: s.panzeri@uke.de (S.P.), c.becchio@uke.de (C.B.)
https://doi.org/10.1016/j.cub.2023.05.055
SUMMARY
The ability to anticipate what others will do next is crucial for navigating social, interactive environments.
Here, we develop an experimental and analytical framework to measure the implicit readout of prospective
intention information from movement kinematics. Using a primed action categorization task, we first
demonstrate implicit access to intention information by establishing a novel form of priming, which we
term kinematic priming: subtle differences in movement kinematics prime action prediction. Next, using
data collected from the same participants in a forced-choice intention discrimination task 1 h later, we
quantify single-trial intention readout—the amount of intention information read by individual perceivers
in individual kinematic primes—and assess whether it can be used to predict the amount of kinematic
priming. We demonstrate that the amount of kinematic priming, as indexed by both response times
(RTs) and initial fixations to a given probe, is directly proportional to the amount of intention information
read by the individual perceiver at the single-trial level. These results demonstrate that human perceivers
have rapid, implicit access to intention information encoded in movement kinematics and highlight the po-
tential of our approach to reveal the computations that permit the readout of this information with single-
subject, single-trial resolution.
INTRODUCTION

Motor control anticipates future states. In tasks where an object

is reached, grasped, lifted, and manipulated, subtle changes in

reaching behavior anticipate the actor’s intention in grasping

the object.1 This raises the possibility that others’ goals and in-

tentions can be inferred from movement kinematics.1–4 But do

human perceivers have access to this information? Do they

use prospective information (i.e., information about the behavior

to follow) encoded in movement kinematics to predict the ac-

tions of others?

Research addressing these questions has focused on para-

digms using the forced-choice format.5 In a typical experi-

ment, a video of a reaching movement is played, and partici-

pants are asked to decide on the intention of the observed

movement, e.g., whether the observed reach is guided by

the intent to pour or drink.6–9 Forced decisions of this type

are a sensitive measure of intention readout. They allow re-

searchers to determine how well perceivers can discriminate

between actions performed with different intentions.6,8 Com-

bined with computational methods, they enable assessment

of how intention information encoded in movement kinematics

(single-trial kinematic encoding) is read out by individual hu-

man perceivers (single-trial kinematic readout) at the single-

trial level.10–12
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Studies using this approach show that naive participants are

able to read some, but not all, of the prospective information en-

coded in movement kinematics.11 However, this does not mean

that human perceivers normally represent (or use) this informa-

tion. By design, in a two-alternative forced-choice task, partici-

pants are forced to make a choice between alternatives that

have to differ. Their choice can be based on separable represen-

tations of the two action intentions or simply on differences in

movement kinematics or even differences in a specific kinematic

variable. Thus, it remains unclear whether human perceivers

represent action intentions (even without explicit instruction) or

if they simply rely on variations in movement kinematics to distin-

guish between different alternatives.13

Priming effects have long been used as tools for probing inter-

nal representations.14–17 Here, we introduce a novel priming

technique—kinematic priming—to test whether perceivers build

a representation of others’ intentions from observing their move-

ments. Priming occurs when the judgment of a target stimulus

(probe) is facilitated by the prior presentation of a prime stim-

ulus.14 We reasoned that if mere exposure to movement kine-

matics is sufficient to activate an internal representation of the

agent’s intention in reaching the object, then we should observe

kinematic priming: exposure to a kinematic prime encoding a

given intention should facilitate the subsequent processing of

an action performed with the same intention.
July 10, 2023 ª 2023 The Authors. Published by Elsevier Inc. 2717
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Figure 1. Experimental design and results of kinematic priming and intention discrimination

(A) Experimental design and trial structure. Participants performed a primed action categorization task and, 1 h later, a forced-choice intention discrimination task.

(B) Kinematic primes consisted of videos of reach-to-drink and reach-to-pour movements.

(C) Time course of wrist height (WH), wrist horizontal trajectory (WHT), and grip aperture (GA) for reach-to-drink and reach-to-pour movements. Thin curves show

representative individual trajectories; thick curves with shaded areas show the mean ± SD across kinematic prime stimuli.

(D) Response times (RTs) to action probes in the primed action categorization task by kinematic prime (reach-to-drink, reach-to-pour) and action probe (drinking,

pouring).

(E) Discrimination performance quantified as the predicted probability of correct choice in the intention discrimination task. In (D) and (E), the histograms show the

estimated marginal mean ± SE at the population-level estimated from mixed models fit to single-trial data.

See also Tables S1–S3 and Videos S1 and S2.
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We tested this prediction in a primed action categorization

task. On each trial, participants observed either a reach-to-drink

or reach-to-pour act (kinematic prime) followed by a static

image of a person drinking or pouring (action probe). By

manipulating the prime-probe relationship, we first established

kinematic priming as indexed by faster response times (RTs)

to action probes on congruent trials compared with incongruent

trials. Using data collected from the same participants in a

forced-choice intention discrimination task, we then established

the dependency of kinematic priming on intention information

encoded and readout in kinematic primes at the single-trial

level. Finally, we obtained an independent measure of kinematic

priming by demonstrating that prospective gaze control is also

primed by single-trial intention information.
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RESULTS

Participants (n = 20) first completed a primed action categoriza-

tion task. To account for inherent variability in movement kine-

matics, we selected 60 reach-to-grasp acts from a large dataset

obtained by tracking and simultaneously filming naive agents

performing daily, sequential manipulative actions. In each

trial, participants viewed a video featuring a reach-to-drink or

reach-to-pour act (kinematic prime), followed by a static image

of a person drinking or pouring (action probe) (Figure 1A). To

isolate the prospective information encoded in the reach-to-

grasp phase of the action, prime stimuli were temporally

occluded at the end of the reaching phase, preventing partici-

pants from observing the second part of the action (see STAR
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Figure 2. Kinematic coding framework

(A) Schematic of the encoding (readout) model.

(B) Model performance quantified as the predicted probability of correct choice by the encoding (readout) models. The histograms show the estimated marginal

mean ± SE at the population-level estimated from mixed models fit to single-trial data.

(C) Sketch of the kinematic encoding (left) and readout (middle and right) models in a simplified two-dimensional kinematic space. Elliptical regions represent the

intention-conditional probability distributions in kinematic space. The encoding vector benc
��!

is the axis optimally discriminating reach-to-pour from reach-to-drink

acts. The alignment of the readout vector bread
��!

(the axis used by perceivers to discriminate reach-to-pour from reach-to-grasp) relative to the encoding vector

determines how efficiently the encoded information is read out.

(D) Spearman correlation between intention readout and intention encoding at the single-prime level. For readout, data points represent the average intention

readout across perceivers. The line and shaded region correspond to estimated marginal mean ± SE estimated from a linear model fit to individual prime data.

(E) Color map plotting the contribution of individual kinematic variables to encoding (top) and readout of individual perceivers (bottom, 1–20).

(legend continued on next page)
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Methods) (Figure 1B). The task was to categorize the action

probe, regardless of the kinematic prime. Because the action

probe image was unambiguous, the processing of kinematic

prime was not necessary to successfully complete the task.

We manipulated the relationship between the kinematic prime

and the action probe so that it was either congruent (same inten-

tion) or incongruent (different intention) (Videos S1 and S2).

Most demonstrations of priming occur when the probe shares

overlapping perceptual or semantic features with the preceding

prime. In our task, drinking and pouring action probes share the

same degree of perceptual and semantic overlap with reach-to-

drink and reach-to-pour primes. Specifically, both reach-to-

drink and reach-to-pour primes display an act of reaching for a

bottle, with the only difference being the prospective information

(to pour, to drink) encoded in the kinematics of the displayed

reach. Thus, by design, the manipulation of the congruency be-

tween the kinematic prime and the action probe is only relevant

to a perceiver who has access to this information. For an

observer blind to prospective information, there would be no dif-

ference between reach-to-pour and reach-to-drink kinematics,

resulting in no facilitation for congruent compared with incon-

gruent trials. Any effect of congruency must therefore be attrib-

uted to the use of prospective information encoded in the kine-

matic prime.

Kinematic priming of response latencies
Mixed-effects statistics to test the effect of kinematic primes

(reach-to-drink, reach-to-pour) on RTs to action probes (drink-

ing, pouring) revealed a significant interaction between kine-

matic prime and action probe, reflecting faster responses to

‘‘drinking’’ (pouring) action probes preceded by reach-to-drink

(reach-to-pour) kinematic primes compared with reach-to-

pour (reach-to-drink) kinematic primes. p values of statistical

comparisons are reported graphically in Figure 1D and numer-

ically in Tables S1–S3. These results show reliable kinematic

priming of RTs to both drinking and pouring action probes,

indicating that exposure to prospective information in kine-

matic primes activated a representation of the agent’s

intention.

Kinematic coding framework
Having established kinematic priming as a behavioral phenome-

non, we next investigated its dependency on intention informa-

tion in kinematic primes. Hand kinematics are high-dimensional,

but only a small set of kinematic features encode intention-

related information.6,11 One hypothesis, supported by ideal

observer models,18 is that human perceivers optimally identify

and combine these subset of features. Under this encoding-

based-priming hypothesis, human computations would approx-

imate the computations of the ideal observer (with some noise)

and kinematic priming would be proportional to the information

encoded in the kinematics of the observed prime.

Alternatively, perceivers may access intention information in

kinematic primes using computations that differ qualitatively
(F) Probability of confidence rating in the intention discrimination task as a function

probability of a lower confidence rating decreases and the probability of a higher c

marginal means ± SE estimated from the cumulative link mixed model.

See also Figure S2 and Tables S1–S3.
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from the ideal ones. Our previous work demonstrates that in

forced-choice intention discrimination tasks, intention readout

computations deviate from optimality.11 If readout is suboptimal,

not all the encoded information is read out. For example, per-

ceivers might read some, but not all the informative features. Un-

der this readout-based priming hypothesis, kinematic priming

would be proportional to the information that individual per-

ceivers read in the observed prime, regardless of the overall in-

formation encoded and potentially available to an ideal observer.

Testing these hypotheses requires direct measures of how

prospective information is encoded and read out at the single-

trial level. To obtain thesemeasures, we used our kinematic cod-

ing framework.10–12 This framework was inspired by recent

mathematical advancements linking information encoding and

readout in neural population activity19–21 and subsequently

adapted to investigate information encoding and readout in

movement kinematics.11,12 Here, we used it to determine encod-

ing and readout computations and measure intention informa-

tion encoded and read out by individual perceivers in single-

prime kinematics.

Kinematic encoding of intention information
We represented the kinematics of each kinematic prime as a

vector in the 64-dimensional space of kinematic features (span-

ning 16 kinematic variables over four time-epochs, see STAR

Methods). To determine the subset of kinematic features that

encode intention information in individual kinematic primes, we

computed the probability that a reaching movement was per-

formed with a given intention (to pour) as a logistic regression

of the single-trial kinematic vector of that movement (Figure 2A).

Figure 2C shows a geometric sketch of the encoding model in a

hypothetical, simplified kinematic space spanning two kinematic

features. The encoding boundary defines the boundary that best

separates reach-to-pour and reach-to-drink movements. The

encoding vector (with components equal to the weights of the

encoding logistic regression model) indicates the information

axis orthogonal to the encoding boundary, along which changes

in kinematics maximally discriminate between reach-to-pour

and reach-to-drink. Because the encoding model is trained to

classify intention at the optimal level possible, its performance

(probability of correct choice) serves as a measure of the avail-

able intention information. Additionally, the encoding vector

can be used to determine the optimal computations for intention

discrimination.

We estimated the intention information encoded in each prime

(hereafter, single-trial intention encoding) as the log of the odds

of correct intention encoding of that prime. This index is linearly

related to the scalar product between the single-trial kinematic

vector of that prime and the encoding vector, with sign adjusted

so that positive (negative) single-trial intention encoding denoted

correct (incorrect) encoding. Larger positive values of single-trial

intention encoding indicate larger distance from the encoding

boundary and thus greater availability of information for correct

discrimination.
of single-trial intention readout. As single-trial intention readout increases, the

onfidence rating increases. Lines and shaded regions correspond to estimated
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Across trials, intention encoding reached perfect accuracy

(Figures 2B and S2D). This indicates that variations in movement

kinematics fully specified intention information in each prime.

Figures 2E and S2B visualize the contribution of individual kine-

matic variables to the single-trial intention encoding measured

by the scalar product between the encoding vector and the sin-

gle-trial kinematic vector within the subspace of each variable. In

line with Cavallo et al.6 and Patri et al.,11 intention information

was encoded in a lower-dimensional subspace space spanning

three kinematic variables: the height of the wrist (WH), the hori-

zontal trajectory of the wrist (WHT), and the adduction of hand

dorsum (DPY) (Figure 2E, top).

Kinematic readout of intention information
The encoding model quantifies the overall intention information

encoded in each kinematic prime and available to an ideal

observer. To obtain a measure of how human perceivers read

such information, 1 h after performing the primed action categori-

zation task, we asked participants to judge the intention of the

reaching acts used as kinematic primes in a forced-choice inten-

tiondiscrimination task. Each trial required the perceiver to decide

whether the observed reach-to-grasp was performed with the

intent to pour or drink. As shown in Figure 1E, perceivers were

able to read most, but not all, of the information encoded in kine-

matic primes. Tomeasure the intention information read in individ-

ual primes, we fitted a readout model to the perceivers’ intention

choices. The readout model computed, separately for each

perceiver, the probability of single-trial intention choice, that is,

the probability that the perceiver judged the reaching to be per-

formedwith the intention topour, asa logistic regressionof thesin-

gle-trial kinematic vector of the kinematic prime displayed in that

trial. Figure 2C sketches the readout model in a hypothetical

two-dimensional kinematic space. The readout vector (with com-

ponents equal to the readoutweights of the logistic regression) ex-

presses how the individual perceiver combines features in the ki-

nematic space todiscriminate intention. Thegreater the alignment

between the readout vector and the encoding vector, the more

efficient theperceiver’s readout (for the idealobserver, the readout

vector and the encoding vector would coincide). For a given

perceiver, we estimated the intention information read in given

prime (hereafter, single-trial intention readout) as the log of the

odds of correct intention choice. This index is linearly related to

the scalar product between the single-trial kinematic vector of

that prime and the readout vector that perceiver, with sign

adjusted so that positive (negative) single-trial intention readout

denotedcorrect (incorrect) readout of theencodedprospective in-

formation. Larger positive values of this index indicate higher cor-

rect readout of intention.

Across trials, readout model performance, measured as the

probability of correct choice predicted by the readout models,

achieved 95% (Figure 2B; for performance of individual readout

models and cross-validated performance; see Figures S2A and

S2D). This indicates that the readout model accurately captured

the dependency of perceivers’ intention choices on single-trial

movement kinematics. We verified that discrimination accu-

racies predicted by the model correlated tightly with observed

accuracies at the single-subject level (Figure S2F). We further

validated the model verifying that human perceivers endorsed

with greater confidence choices based on higher intention
readout (Figure 2F) but not higher intention encoding (Figure S2E;

Tables S1–S3). Overall, these results confirm that our readout

model was able to predict how well and how confidently individ-

ual perceivers discriminated intention from single-trial kine-

matics in the intention discrimination task.

Figures 2E and S2C visualize the contribution of individual ki-

nematic variables to single-trial intention readout (measured by

the scalar product between the readout vector and the single-

trial kinematic vector within the subspace of each variable). Rela-

tive to encoding (top), for most perceivers (bottom, 1–20), the

subspace of intention readout was reduced to two kinematic var-

iables: WH and WHT (Figure 2E). Variations in WH are the most

informative regarding intention and, as indicated by a control

study, are easily accessible to human perceivers (Figure S1).

As shown in Figure 2E, most perceivers read WH, although to

varying degrees. The readout of WHT was sparser and much

attenuated, but still present in most participants, whereas only

few perceivers read some of the information encoded in DPY.

To further explore the relationship between encoding and

readout at the single-prime level, we plotted the single-trial inten-

tion readout against the single-trial intention encoding for each

prime. As shown in Figure 2D, a high degree of encoding may

lead to varying degrees of readout. This discrepancy is consis-

tent with varying contribution across primes of high- versus

low-readout features to encoding. When intention information

is encoded in features that are read out effectively similar to

WH, kinematic primes exhibit both high encoding and high

readout. When intention information is encoded in features that

are not effectively read out, similar to DPY, kinematic primes

exhibit high encoding but low readout.

Single-trial intention readout predicts kinematic
priming of response latencies
The above analyses reveal a disparity between single-trial en-

coding and readout. We leveraged this disparity to contrast the

predictions of the encoding-based-priming hypothesis and the

readout-based priming hypothesis. The encoding-based-prim-

ing hypothesis predicts a dependency of kinematic priming on

single-trial intention encoding, resulting in faster (slower) RTs

for congruent (incongruent) trials with high encoding information.

The readout-based-priming hypothesis predicts a dependency

of kinematic priming on single-trial intention readout, resulting

in faster (slower) RTs for congruent (incongruent) trials with

high readout information.

Our results (Figures 3A and 3B) support the readout-based

priming hypothesis. We found no interaction between single-trial

intention encoding and congruency (Figure 3A). However, single-

trial intention readout interacted significantly with congruency.

Higher intention readout yielded faster RTs on congruent trials

and, conversely, slower RTs on incongruent trials (Figure 3B;

Table S3). These results indicate a direct, graded influence of

single-trial intention readout on kinematic priming, the strength

of priming on each trial being proportional to the intention infor-

mation read on that trial.

To confirm that the predictive power came from differences in

single-trial intention readout, we complemented these analyses

by performing a median split of kinematic primes based on sin-

gle-trial intention encoding (readout) and comparing the amount

of priming (RTs on incongruent trials minus RTs on congruent
Current Biology 33, 2717–2727, July 10, 2023 2721
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Figure 3. Single-trial intention readout pre-

dicts RTs to action probes

(A) RTs to action probes by single-trial intention

encoding and congruency.

(B) RTs by single-trial intention readout and con-

gruency.

(C) Priming effect (incongruent-congruent) by low

and high encoding information.

(D) Priming effect (incongruent-congruent) by low

and high readout information. Mean lines, shaded

areas and histograms and error bars represent

estimated marginal means ± SE at the population

level. Dotted vertical lines (A) and (B) indicate the

median value of single-trial intention encoding/

readout used for median-split in (C) and (D).

See also Figures S3–S5 and Tables S1–S3.
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trials) between high- and low-encoding (readout) trials. Consis-

tent with the readout-based priming hypothesis, kinematic prim-

ing was larger and significant for high-readout kinematic primes

and smaller and nonsignificant for low-readout kinematic primes

(Figure 3D). In contrast, no difference was observed between

low- and high-encoding primes (Figure 3C; Table S3).

Another prediction of the readout-based-priming hypothesis

is that kinematic primes from which no intention information is

read out should not influence responses to action probes, even

if they encode intention information. The fitted lines intersecting

around zero readout in Figure 3B qualitatively support this pre-

diction. To quantitatively corroborate this observation, we

compared kinematic priming of RTs between high-readout trials

and zero-readout trials, in which no information was read out

from the presented prime in the intention discrimination task.

This analysis revealed no kinematic priming for zero-readout tri-

als. As shown in Figure S4, compared with zero-readout trials,

RTs were faster on congruent trials and slower on incongruent

trials in high-readout trials. This indicates that intention informa-

tion read in kinematic primes facilitated the processing of

congruent probes and hindered the processing of incongruent

probes.

Readout computations revealed considerable variability

across perceivers (Figure 2E). To establish the relevance of this

variability to kinematic priming, we tested whether individual dif-

ferences in single-trial intention readout could predict individual

perceivers’ strength of kinematic priming. Intention readout
2722 Current Biology 33, 2717–2727, July 10, 2023
positively correlated with the strength of

the kinematic priming effect at the individ-

ual level (Figure S3). We also fit readout

models to surrogate data obtained pooling

trials of all perceivers in order to remove the

individuality of readout computations and

verified that pooled models could not pre-

dict kinematic priming effects (Table S3).

These results reinforce the functional rele-

vance of our individualized approach to

intention readout, in that they demonstrate

that individuality of readout computations

matters for kinematic priming.

The dependency of kinematic priming on

single-trial intention readout persisted
even when controlling for pre-trial fluctuations of alertness as

measured by changes in pupil dilation during the pre-trial

period22 (Tables S1–S3). This suggests that trial-to-trial fluctua-

tions in cortical state are unlikely to contribute to kinematic

priming.

Collectively, these observations suggest that kinematic prim-

ing truly reflects the amount of intention information read by indi-

vidual perceivers in individual primes, rather than the amount of

intention information encoded and potentially available to an

ideal observer.

Kinematic priming of initial fixations
To obtain an independent measure of kinematic priming, we

examined gaze behavior over the probe image as a function of

the previously observed kinematic prime. Gaze control during

action perception can be conceptualized as an active process

of hypothesis testing where saccadic sampling of regions con-

taining task-relevant information is performed to evaluate

competing hypotheses.23 As such, where a viewer looks reflects

a prediction about themost probable location of task-relevant in-

formation (see also Henderson24). We reasoned that if intention

information extracted from kinematic primes is used to predict

task-relevant information in action probes, the distribution of

initial fixations on the probe image should reflect these predic-

tions. Specifically, the probability of the first fixation being

directed to the region containing task-relevant information for

the displayed probe (e.g., lower left quadrant when the displayed
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Figure 4. Kinematic priming of initial fixations

(A) Quadrants of task-relevant information in action

probes. The shaded area indicates the quadrant of

each probe containing task-relevant information.

(B) Probability of initial fixation to the quadrant

relevant for the displayed probe by kinematic prime

(reach-to-drink, reach-to-pour) and action probe

(drinking, pouring).

(C) Probability of initial fixation to the quadrant

relevant for the non-displayed probe by kinematic

prime (reach-to-drink, reach-to-pour) and action

probe (drinking, pouring). Histograms plot the esti-

mated marginal mean ± SE at the population-level

estimated from mixed models fit to single-trial data.

See also Figure S4 and Tables S1–S3.

ll
OPEN ACCESSArticle
probe is pouring) should be higher for congruent trials than for

incongruent trials. Conversely, the probability of the first fixation

being directed to the region containing task-relevant information

for non-displayed probe (upper right quadrant when the dis-

played probe is pouring) should be higher for incongruent trials

than for congruent trials (Figure 4A).

Analyses of initial fixations confirmed these predictions. Initial

fixations showed a prime-probe congruency effect driven by a

higher probability of initial fixations to the quadrants containing

task-relevant information for the displayed probe on congruent

compared with incongruent trials (Figure 4B; Table S3). The

opposite pattern was observed for initial fixations on the quad-

rants containing task-relevant for the non-displayed probe: the

probability of initial fixation in these quadrants was higher for

incongruent than for congruent trials (Figure 4C; Table S3).

Taken together, these results indicate that prospective informa-

tion extracted from kinematic primes guided initial fixations.

As reported in Figure S4A, initial fixations landed on the region

predicted to contain task-relevant information approximately

200ms after the probe was displayed. Incidentally, this observa-

tion refutes the idea that participants perform the primed action

categorization task by first explicitly identifying the intention of

the kinematic prime and then using this information to categorize

the intention of the probe image, given that the time required to

discriminate kinematic primes in the intention discrimination task

exceeds 600 ms (Figure S4A).

Single-trial intention readout predicts kinematic
priming of initial fixations
We then investigated whether single-trial intention encoding and

readout could predict the probability of initial fixation. Because
Curren
of the limited number of data points for initial

fixations in the quadrants relevant to non-

displayed probes, we focused this analysis

on quadrants relevant to displayed probes.

Single-trial intention encoding did not

interact with congruency (Figure 5A; Table

S3). However, we found a significant inter-

actionbetween single-trial intention readout

and congruency. Higher intention readout

increased the probability of initial fixation

on congruent trials and, conversely, dec-

reased (albeit non-significantly), the pro-
bability of initial fixation on incongruent trials (Figure 5B;

Table S3). Using a median split of single-trial intention encoding

(readout) confirmed a dependency of kinematic priming of initial

fixationonsingle-trial intention readout.Kinematicprimingof initial

fixation was larger for high-readout kinematic primes compared

with low-readout kinematic primes (Figure 5D; Table S3), whereas

it did not differ between high- and low-encoding primes (Fig-

ure 5C). Collectively, these results support the readout-based

priming hypothesis and suggest control of gaze truly reflected

the information readout at the single-subject, single-trial level.

DISCUSSION

To navigate the social environment, it is often necessary to antic-

ipate the objectives and intentions of other individuals.1,4 Our

research establishes the significance of movement kinematics

in this process by presenting evidence for a novel type of prim-

ing, which we term kinematic priming. Distinct from visuomotor

priming25,26 or body-part priming,27 kinematic priming is not

induced by action observation—what another person is do-

ing—but rather by action anticipation—what the other person

will do next. Using a novel experimental and analytic framework

combining kinematic priming with single-trial kinematic cod-

ing,10–12,19 we demonstrate that this anticipation is enabled by

the implicit readout of prospective information encoded inmove-

ment kinematics and is proportional to the prospective informa-

tion that individual perceivers read in individual primes.

Readout of intention information varies from perceiver to

perceiver and, within the same perceiver, from trial to trial.11,12

Modeling intention readout with single-subject, single-trial reso-

lution enabled us to predict kinematic priming over a wide range
t Biology 33, 2717–2727, July 10, 2023 2723
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Figure 5. Single-trial intention readout pre-

dicts initial fixations

(A) Probability of initial fixation to the region con-

taining the most task-relevant information by single-

trial intention encoding.

(B) Probability of initial fixation to the region con-

taining the most task-relevant information by single-

trial intention readout.

(C) Priming effect (incongruent-congruent) by low

and high encoding information.

(D) Priming effect (incongruent-congruent) by low

and high readout information. Conventions are as in

Figure 3.

See also Tables S1–S3.
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of readout strengths. Higher intention readout yielded faster RTs

on congruent trials and slower RTs on incongruent trials. Priming

of initial fixations was also modulated by single-trial intention

readout, with higher intention readout increasing the probability

of fixating selectively on task-relevant regions of the probe in

congruent trials, whereas reducing this probability in incongruent

trials. These complementary results indicate that prospective in-

formation read in kinematic primes influenced both the predic-

tion of the most probable location of task-relevant information

(as indexed by initial fixations23) and the processing of this infor-

mation (as indexed by RTs). Together with the observation that

prospective information encoded in movement kinematics and

potentially available to an ideal observer did not influence re-

sponses to action probes, these results provide strong evidence

for a direct, graded influence of single-trial kinematic readout on

kinematic priming.

We have previously demonstrated that the readout computa-

tions by individual perceivers can be revealed by modeling the

dependency of explicit intention choices on single-trial move-

ment kinematics in a forced-choice intention discrimination

task.11,12 The readout model identifies the computations by

which individual perceivers combine kinematic features to

discriminate intention. Our current findings extend this evi-

dence by showing that individual readout computations esti-

mated from a two-alternative forced-choice intention discrimi-

nation task can be effectively used to predict the implicit use
2724 Current Biology 33, 2717–2727, July 10, 2023
of prospective information by the same

perceiver in a separate task and session

(Figures 3B and 5B). These findings high-

light the utility of modeling kinematic en-

coding and readout at the single-subject,

single-trial level, and suggest that the esti-

mated computations capture a structural

property of kinematic readout geometry

of the individual perceiver, which remains

temporally stable across sessions and

can predict the use of prospective infor-

mation across tasks. In our design, the

two tasks were separated by a relatively

short duration (1 h). It remains to be

seen to what extent the readout computa-

tion remains stable in over days, months,

or even years, and whether (and how)

experience and tutoring can shape it.
Additionally, future research should explore the generalizability

of readout computations to multiple outcomes. In our study,

although the levels of encoding and readout were continuous

in kinematic primes, prediction was between only two possible

outcomes: drinking or pouring. For simple perceptual deci-

sions, computations have been demonstrated to be similar

for two- and four-choice tasks.28 This suggests that readout

computations supporting action prediction may generalize to

three or four outcomes, such as predicting if the person will

drink, pour, or pass the bottle to someone else. As the number

of possible outcomes increases, perceivers may use contextual

information to narrow down the potential outcomes, and then

use kinematics to select among them.1

At a neural level, there are at least two processing pathways

through which kinematics could contact a representation of the

action intention. Kinematic priming could be implemented via

the ventral pathway linking the middle temporal gyrus to anterior

regions of the inferior frontal gyrus.29 This pathway has been pro-

posed to code a semantic, abstract representation of the action

intention. At this level of description, there is no one-to-onemap-

ping between the intention and the action to be performed. Un-

der this hypothesis, kinematic priming would provide access to

the most probable intention of the observed reach-to-grasp

act (e.g., to drink) at a level of abstraction compatible with

several potential available actions (e.g., bringing the bottle to

the mouth or drinking from a glass). Alternatively, kinematic
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priming may be implemented via the dorsal pathway that con-

nects posterior regions of the inferior frontal gyrus to the anterior

portion of the inferior parietal lobule.8,9,11,29 At this level, the

intention maps to a specific action plan of the most probable ac-

tion to be performed. Under this hypothesis, prospective infor-

mation read in movement kinematics would prime a concrete

representation specifying the spatial metrics of the action to be

performed (e.g., lifting the bottle and bringing it to the mouth).

We have previously shown that decoding of intention during ac-

tion observation is most robust from regions of the dorsal

pathway9 and that transient disruption of activity in the anterior

portion of the inferior parietal lobule (but not the anterior portion

of the inferior frontal gyrus) selectively deteriorated readout com-

putations in a two-alternative forced-intention discrimination

task.11 Here, our analysis of gaze control reveals that perceivers

were primed to preselect a specific spatial location on the action

probe (e.g., after observing a reach-to-pour prime, they looked

at the lower left quadrant, anticipating the interaction of the bot-

tle with the glass in that area). This implies the formation of a con-

crete representation of the action to be performed. Although

these results do not permit any inference about the specific neu-

ral mechanisms responsible for kinematic priming, they make a

specific neural prediction regarding the involvement of the dorsal

pathway. To directly test this hypothesis, future studies could

selectively target dorsal and ventral pathway regions with trans-

cranial magnetic stimulation (TMS) to disrupt their function dur-

ing kinematic priming. Based on our current and previous find-

ings,11 we would expect that the anterior portion of the inferior

parietal lobule is necessary for kinematic priming of intention.

In hierarchical models of action observation, the kinematic

level and the intention level are often regarded as separate and

independent levels.30 This has led to the proposal that inten-

tion-related variations in movement kinematics are problematic

for designingwell-controlledmeasures of intention identification.

This is because if different intentions are confounded with

different kinematics, it becomes unclear whether choices reflect

intention identification or, instead, representation of kinematics

without inference of intention.31 Our findings challenge this

view by demonstrating that implicit readout of prospective infor-

mation inmovement kinematics provides perceivers with access

to intention representations. In this context, intention-related

variations in movement kinematics are not an undesirable con-

founding factor; rather, they form the basis for inferring inten-

tions. This has implications for action observation models, as

well as for models of mindreading, which often assume that

mindreading does not entail decoding of observable stimuli.32

When perceiving and acting, human perceivers engage in pre-

dictive processing at multiple timescales, from milliseconds to

seconds and even minutes.54 Kinematic priming operates on a

scale (hundreds of millisecond) that is fundamental for many

ecologically important behaviors including, fine motor coordina-

tion,33 embodied decision making,34,35 social signaling, and

transmission.36–38 The approach described in the current work

could be extended to link visual and motor representations39

and predict individual differences in these domains. Moreover,

it could be useful for understanding altered readout computa-

tions in clinical disorders such as autism spectrum disorders12,40

and their relation to difficulties in mindreading in processing real-

life social information.41
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Lead contact
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becchio@uke.de).

Materials availability
This study did not generate new unique reagents or materials.

Data and code availability
The data supporting the main findings of this study are available for download at the following link (https://data.mendeley.com/

datasets/m6s3r6fzzs/). The code supporting the main findings of this study is based on public available tools listed in the key re-

sources table. Custom functions inputting data to toolboxes will be made available by the lead contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty participants (9 females, 11 males, mean age 31, range 21-40 years) took part in the experiment. All participants were right-

handed, had normal or corrected-to-normal vision and were naı̈ve to the purpose of the experiment. None of them declared any his-

tory of psychiatric or neurological diseases. The research was approved by the local ethical committee (ASL 3 Genovese) and was

carried out in accordance with the principles of the revised Helsinki Declaration.42 All participants provided written informed consent

and received monetary compensation in return for their participation.
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METHOD DETAILS

All participants completed a primed action categorization task and, one hour later, an intention discrimination task on the stimuli used

as kinematic primes in the primed action categorization task. To avoid any influence of intention discrimination on kinematic priming,

all participants performed the primed action categorization task first.

Primed Action Categorization Task
Experimental design

Kinematic primes consisted of 30 videos of grasp-to-pour movements and 30 videos of grasp-to-drink movements. On each trial,

participants observed either a grasp-to-drink or grasp-to-pour prime, followed by a pouring or drinking action probe (Figure 1A).

The action probe consisted of a photograph of a male agent drinking or pouring. We manipulated the relationship between the kine-

matic prime and the action probe on the intention dimension so that it was congruent in 75% of the trials and incongruent in 25% of

the trials.

Procedure and apparatus

Each trial began with the presentation of a central fixation cross for 4000 ms, then a kinematic prime was presented, followed by an

action probe. Participants were asked to indicate via a button press whether the agent depicted in the action probe drank or poured

(right key = ‘‘drink’’; left key = ‘‘pour’’, counterbalanced across participants). The action probe remained on screen for a maximum of

3000 ms or until participant’s response and was followed by a fixation cross screen of 2000 ms. The session began with a practice

block of 8 trials (6 congruent and 2 incongruent). Participants then performed three blocks of 80 trials (60 congruent, 20 incongruent

trials), for a total of 240 trials. No feedback was provided. Stimuli were presented on a 21.5-inch LCD monitor with a resolution of

1,920 3 1,080 pixels (refresh rate: 60 Hz), viewed from a distance of 100 cm, with the head stabilized by a chin rest. Stimulus pre-

sentation, timing, and randomization were controlled using Experiment Builder software (SR Research, Ontario, Canada).

Kinematic primes. Acquisition and analysis

Reach-to-grasp movements used as kinematic primes were chosen from a large dataset obtained by tracking and simultaneously

filming 17 participants performing four naturalistic sequential activities: i) reaching for, grasping, lifting a bottle, and pouring water

into a glass; ii) reaching for, grasping, lifting a bottle, and taking a sip from it; iii) reaching for, grasping, lifting, and placing the bottle

into a box; iv) reaching for, grasping, lifting, and passing the bottle to a co-experimenter. Each participant completed 2 blocks of 40

trials, with 10 consecutive trials for each action sequence in each block. The order of conditions was counterbalanced across par-

ticipants. In i) and ii), a co-experimenter refilled the bottle on each trial. Detailed apparatus and procedures for motion-tracking are

described in Cavallo et al.6 In brief, each participant was outfitted with 20 lightweight retro-reflective hemispheric markers (4 mm in

diameter). Reach-to-grasp movements were tracked using a near-infrared camera motion capture system with nine cameras (Vicon

Motion Systems Ltd, Oxford, UK; frame rate: 100 Hz) and concurrently filmed from a lateral viewpoint using a digital video camera

(Sony Handycam 3D, 25 frames/sec; Sony Corporation, Tokyo, Japan). Computation of kinematic variables was based on Cavallo

et al.6 and followed identical procedures. We used custom software (Matlab; MathWorks Inc., Natick, MA) to compute two sets of

kinematic variables of interest: Fglobal and Flocal variables. Fglobal variables were expressed with respect to the global frame of refer-

ence, i.e., the frame of reference of the motion capture system. Within this frame of reference, we computed the following variables:

d wrist velocity, defined as the module of the three-dimensional velocity vector of the wrist marker (mm/sec);

d wrist height, defined as the z-component of the wrist marker (mm);

d wrist horizontal trajectory, defined as the x-component (transverse component) of the wrist marker (mm);

d grip aperture, defined as the distance between the marker placed on thumb tip and the one placed on the tip of the index finger

(mm).

To provide a better characterization of the hand joint movements, the second set of variables was expressed with respect to a local

frame of reference centred on the hand (i.e., Flocal). Within Flocal, we computed the following variables:

d x-, y-, and z-thumb defined as x-, y- and z-coordinates for the thumb with respect to Flocal (mm);

d x-, y-, and z-index defined as x-, y- and z-coordinates for the index with respect to Flocal (mm);

d x-, y-, and z-finger plane defined as x-, y- and z-components of the thumb-index plane, i.e., the three-dimensional components

of the vector that is orthogonal to the plane, providing information about the abduction/adduction movement of the thumb and

index finger irrespective of the effects of wrist rotation and of finger flexion and extension;

d x-, y-, and z-dorsum plane defined as x-, y- and z-components of the radius-phalanx plane, providing information about the

abduction, adduction, and rotation of the hand dorsum irrespective of the effects of wrist rotation.

All variables were calculated only considering the reach-to-grasp phase of the movement, from ‘reach onset’ (i.e., the first time

point at which the wrist velocity crossed a 20 mm/s threshold) to ‘reach offset’ (i.e., the first time point at which the wrist velocity

dropped below a 20 mm/s threshold).

Kinematic prime: selection and post-processing

From the above dataset, we selected 30 reach-to-pour and 30 reach-to-drink movements. Acts were selected based on previous

data in our laboratory6–8 with a target discrimination accuracy of about 75% in the intention discrimination task. Movement duration
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(mean ± SEM = 1.04 ± 0.02 s, range = 0.84 to 1.36 s) did not differ between intentions (t(58) = 1.36; p = 0.18). The 60 unique video clips

corresponding to the selected movements were edited using Adobe Premiere Pro CS6 (Adobe Systems Software Ltd, Dublin,

Ireland; mp4 format, disabled audio, 25 frames/s, resolution 1280 x 800) so that each clip started at reach onset and ended at reach

offset. To allow participants enough time to focus on initiation of the movement, 9, 11, or 13 static frames (corresponding to 360 ms,

440 ms and 520 ms) were randomly added at the beginning of each video.

Eye tracking apparatus and paradigm

Eyemovements were monitored using an EyeLink 1000 Plus desk-mounted eye tracker (SR Research, Ontario, Canada), which uses

infrared pupil detection and corneal reflection to track eye movements. Eye movements and pupil diameter were recorded monoc-

ularly from the participants’ right eyes at 1000 Hz. Participants’ eyemovements were calibrated and validated using a nine-point cali-

bration fixation sequence at the beginning of the experimental session. Eye movement data were analysed using the Data Viewer

software (version 4.1.211, SR Research, Ontario, Canada). Initial fixations were defined as average gaze position during periods

where the change in recorded gaze direction was smaller than 0.1�, eye movement velocity was below 30�/s, and acceleration

was below 8000�/s^2. To assess the influence of kinematic priming on gaze control, we divided each action probe into four equal

quadrants and identified the quadrant that containedmost task-relevant information (top right quadrant withmouth-bottle interaction

for drinking, bottom left quadrant with bottle-glass interaction for pouring, Figure 4A).

To examine the possible influence of trial-to-trial fluctuations of alertness on kinematic priming, we computed the averaged base-

line pupil diameter in the one second preceding the display of the kinematic prime. Pupil diameter signals were pre-processed with

standard techniques.43 Blinks were treated with linear interpolation, and the resulting pupil traces were smoothed with a first-order

10 Hz low-pass-filter.

Intention Discrimination Task
One hour after completing the primed action categorization task, participants performed a forced-choice intention discrimination

task on the stimuli used as kinematic primes in the primed action categorization task (Figure 1A). Task structure conformed to a

one-interval two-alternative forced-choice discrimination task. Each trial started with the presentation of a central fixation cross

for 4000 ms, then a reaching act was presented, followed by a fixation cross. Participants were asked to indicate via button press

(right key = ‘‘pour’’; left key = ‘‘drink’’, counterbalanced across participants) the intention of the observed reaching act. 2000 ms after

response, the screen prompted participants to rate the confidence of their decision on a four-point scale by pressing a key (from 1 =

least confident to 4 = most confident). Participants were encouraged to use the entire confidence scale. If no response was given

within 3000 ms, the next trial was presented. No feedback was provided to participants at any stage of the experiment. The session

began with a practice block of 8 trials (4 trials for each intention). Participants then performed 4 blocks of 60 trials, for a total of 240

trials. Each video was viewed once in each block. Stimulus presentation, timing and randomization procedure were controlled using

Experiment Builder software (SR Research, Ontario, Canada).

Kinematic Discrimination Task
We performed a control analysis designed to test human perceptual accessibility to kinematic features observed in the intention

discrimination task (Figure S1A). Specifically, we tested 8 new participants to assess their ability to discriminate wrist height.

Task structure conformed to a two alternative forced choice (2AFC) design. The kinematic discrimination task included the

same stimuli as the intention discrimination task, except that participants were asked to indicate the interval containing the

grasp with higher peak vertical height of the wrist. The kinematic discrimination task consisted of two blocks of 30 trials.

Each trial displayed two reach-to-grasp acts in two consecutive temporal intervals. Each trial started with the presentation of

a green central fixation cross for 1500 ms. Then, the first grasping act was presented followed by an inter-stimulus interval

of 500 ms, after which the second grasping act was presented. After the end of the second video, the screen prompted partic-

ipants to indicate the interval (first or second) containing the higher wrist height by pressing a key. The prompt screen was dis-

played until response or for a maximum duration of 3000 ms. After response, participants were requested to rate the confidence

of their choice on a four-point scale by pressing a key. Pairing of videos was randomized across trials and participants. Partic-

ipants began the session by performing a practice block of 4 trials before the main experimental task. No feedback was pro-

vided. Stimulus presentation, timing and randomization was controlled using E-prime V2.0 software (Psychology Software Tools,

Pittsburgh, PA).

QUANTIFICATION AND STATISTICAL ANALYSIS

Kinematic Intersection Framework
Single-trial kinematic vector

The kinematics of the hand are higher dimensional than those of other effectors. To establish which dimensions are relevant for the

encoding (and readout) of intention information, we started with a high-dimensional model space and then used regularized regres-

sion with penalty terms and cross-validated methods, to define the kinematic subspace that captures intention information. As

described in Patri et al.,11 we averaged the 16 kinematic variables of interest over 4 time epochs of 25% of the normalized movement

time (0-25%, 25-50%, 50-75%, and 75-100% of movement duration defined from reach onset to reach offset). For each trial, we

created a 64-dimensional vector defined by the 16 kinematic variables over the 4 time epochs (64 kinematic features). We verified
e3 Current Biology 33, 2717–2727.e1–e6, July 10, 2023
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that increasing the number of time epochs to 6 and 8 did not significantly increase the performance of the encoding or readout

models (p > 0.3 for all comparisons).

Kinematic encoding and readout models

To quantify the dependence of intention on trial-to-trial variations in movement kinematics (i.e., kinematic encoding of intention in-

formation), we trained a logistic regressionmodel to predict the probability that a reachwas performedwith the intention ‘to pour’ as a

function of the single-trial kinematic vector (Figure 2A). The logistic regression assumes that the log of the odds of to pour vs to drink

depends linearly on the kinematics. Thus, the kinematic encodingmodel expressed single-trial probability Y of intention ‘to pour’ as a

sigmoid transformation of a weighted sum of the components of the single-trial kinematic vector K
!
, as expressed by the following

equation:

P
�
½Y = 0to � pour0�

��� K!
�
= s

�
b
!
$K
!

+ b0

�

P
�
½Y = 0to � drink0�

��� K!
�
= 1 � P

�
½Y = 0to � pour0�

��� K!
� (Equation 1)

where s is the sigmoid function, b
!

is the vector containing the values of the regression coefficients of each kinematic feature, and b0
is the bias, kinematic independent, term.

Similarly, to quantify the dependence of intention choice on trial-to-trial variations in movement kinematics (i.e., kinematic readout

of intention information), we trained, separately for each perceiver, a logistic regression classifier to predict the single-trial probability

Y of intention choice ‘to pour’ as a function of the single-trial kinematic vector.

Training kinematic encoding and readout models

Training and evaluation were performed in a similar manner for kinematic encoding and readout models. To avoid penalizing predic-

tors with larger ranges of values, we z-scored single-trial kinematic vectors within each model. Models were trained using elastic-net

regularization, with a value of a = 0.95 for the elastic net parameter to provide sparse solutions in parameter space.44 To confirm that

the pattern of readout weights was robust to the choice of the elastic net hyper-parameter a, we computed for each participant the

correlation between the readout weights for a = 0.95 with the readout weights obtained with values of a ranging from 0.5 to 1. Cor-

relation values decreased with a values but remained higher than 0.9 for all a > 0.5. The parameter l, which controls the strength of

the regularization term, was estimated for each model using leave-one-video-out cross-validation. For each model, we retained the

value lmin associated to the minimum mean cross-validated error. Models were then trained on all trials with the retained regulariza-

tion term. Encoding models were trained on the 60 reaching acts. Readout models were trained, separately for each participant, on

240 trials (resulting from four repetitions of each the 60 videos in the intention discrimination tasks). Logistic regression was imple-

mented using R package ‘‘glmnet’’45 (https://CRAN.R-project.org/package=glmnet, 4.1–3).

In the main text, we report the results obtained by applying this training procedure as it gives only one set of regression coefficients

per analysed case, and it is therefore easier to interpret. However, as shown in Figure S2D, results remained highly significant

(p <0.001) using nested leave-one-video-out cross validation on the entire procedure.

Evaluation of model performance

To quantify model performance, we computed themost likely value of Y for each trial by taking the argmax over Y of PðY
��� K!Þ in Equa-

tion 1. This function returns an estimate of the model prediction (prediction of the actual intention for the encoding model; prediction

of observer’s choice for the readout model) on each trial. We then quantifiedmodel performance as the fraction of correct predictions

over trials. The chance-level null-hypothesis distribution for readout model performance was created by fitting the model after

randomly permuting across trials the observer’s choice labels.

Verification of the statistical significance of non-zero regression coefficients

To verify the statistical significance of non-zero regression coefficients,46 we did a permutation test in which a null hypothesis dis-

tribution of regression weights was obtained after random permutations of the trial labels. We took the absolute value of each indi-

vidual regression coefficient obtained in the permuted dataset to build a distribution of absolute values of regression coefficient ex-

pected under the null-hypothesis of no relationship between the kinematics and the variable Y. We verified that all non-zero beta

coefficients had an absolute value that exceeded the 95th percentile of this null-hypothesis distribution.

Computation of single-trial encoding and readout of intention information

We computed an index of intention information encoded in a single trial (termed single-trial kinematic encoding) as the log of the odds

of correct encoding. This index equals the argument of the sigmoid function in the logistic regression model (Equation 1), with sign

adjusted so that positive (negative) single-trial intention encoding denoted correct (incorrect) encoding. Thus, its magnitude directly

quantifies the confidence (the log of the odds of the two alternatives) of the intention classification performed by the encoding model

in that trial. When the kinematic-independent bias term b0 in Equation 1 is null, this index equals the sign-adjusted scalar product

between the single-trial kinematic vector K
!

of that prime and the encoding vector benc
��!

(with components equal to the encoding

weights). Similarly, we computed single-trial intention readout as the log of the odds of correct readout. As for encoding, its magni-

tude relates to the confidence of the intention choice classification by the readout model. When the bias b0 is null, the single trial

intention readout equals the sign-adjusted scalar product between the single-trial kinematic vector K
!

and the readout vector

bread
��!

(with components equal to the readout weights).
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Contribution of individual kinematic variables to intention encoding and readout

The colour map in Figure 2E visualizes the contribution of individual kinematic variables to intention encoding and readout. Single

variable contribution to encoding (readout) performance was computed as the scalar product between the kinematic vector and

the encoding (readout) vector calculated within the feature subspace formed by the features of the considered kinematic variable

(e.g., 25%, 50%, 75% and 100% of movement time for WH). Positive (negative) values of this index imply a positive (negative) contri-

bution of the variable toward enhancing (decreasing) discrimination performance. Bar plots of the contribution of individual kinematic

variables to encoding and readout are shown in Figures S2B and S2C, respectively.

Pooled readout models

For this control analysis, we fit readout models on surrogate data obtained pooling trials of all perceivers. To ensure fully comparable

model training and testing conditions in terms of data numerosity, we resampled the pooled-trials dataset to create 20 surrogate par-

ticipants that had their data randomly sampled (eliminating the identity of the perceivers the trials came from) with exactly the same

number of trials per participant as in the original data. The pooled readout models were then fit as described in the Training kinematic

encoding and readout models section. The results of this analysis are presented in Tables S1–S3.

Null readout primes

For the analysis in Figure S4B, we established a set of kinematic primes (termed zero readout primes) from which no information

could be read out. These primes were selected with the stringent double criterion that behavioural discrimination performance in

the 2AFC intention discrimination task was at chance level (p > 0.05) across trials, and that intention readout values at the single-

video, single subject level did not exceed the 95th percentile of the null-hypothesis distribution. Specifically, the significance of infor-

mation readout for a given prime was established by creating a null-hypothesis distribution running 10000 times a logistic readout

model on surrogate data in which intention choices were the same as in the original data for all primes but the one considered.

For this prime, intention choices were generated at random, with equal probability between intention choices. This procedure en-

sures that readout is identical for actual data and surrogate data, with the only exception of the considered prime for which readout

is erased by choice randomization.

Assessment of statistical differences
Data exclusions. Primed action categorization task

Trials in which the action was not correctly categorized were removed (2%). For the analysis of RTs, responses exceeding > 2.5 SD

from the participant’s mean were excluded from subsequent analysis (2%). For the analysis of initial fixations, trials in which no initial

fixation on the probe was detected were excluded from the analysis (14%).

Gamma Mixed Effects Models (GMEM) for assessing statistical differences in RTs in the primed action categorization

task

We used gamma mixed effects models to assess the significance of differences in RTs in the primed action discrimination task (Fig-

ure 1D; Tables S1–S3). Gamma distributions model positively skewed, non-negative data.47 We compared gamma distributions with

other distributions which allow for skewness (e.g., inverse gaussian, lognormal, etc.) and verified that models with gamma distribu-

tions yielded better performed both in terms of log-likelihood and BIC. To characterize the expected relationship between the pre-

dictors and the dependent variable, following the recommendations of Lo and Andrews,48 we used an identity link function assuming

RTs to be linearly affected by the predictors in the model (as opposed to non-linear alternatives such a log or inverse links). GMEM

were implemented using the glmer function from the R package ‘‘lme4’’49 (https://cran.r-project.org/web/packages/lme4/index.

html, 1.1-27.1).

To investigate the presence of kinematic priming at the single-participant, single-trial level in the primed action categorization task,

we considered RT in each trial as dependent variable, kinematic prime and action probe as categorical predictors, as well as a prime

by probe product term, and participant and prime identity as random effects (see Mixed Effects Model Random effects for further

details). Categorical factors were specified using sum contrasts. In linear models for factors with two levels, sum contrasts provide

a simple test for the difference between those two factor levels.50

We also used GMEM to quantify the dependence of RTs in the primed action categorization task on the single-trial kinematic en-

coding (readout) and the kinematic prime/action probe congruency (Figures 3A and 3B; Tables S1–S3). We considered RTs as

dependent variable, action probe (drink, pour) and congruency (congruent, incongruent) as categorical predictors, and single-trial

encoding (readout) as continuous predictor. To test the hypothesis of graded influence of single-trial intention encoding (readout)

on congruency, all two and three-way interaction product terms were also added as fixed effects.

To quantify the influence of pre-video fluctuations in baseline pupil dilation, we extended the above model of RT (dependent var-

iable) to include baseline pupil dilation (z-scored within each participant), in addition to single-trial readout as continuous predictors

and congruency (congruent, incongruent) as a categorical predictor. To examine if there was any influence between pupil dilation,

congruency and readout, all two and three-way interaction product terms were also included as fixed effects (Tables S1–S3).

We used GMEM to compare the amount of priming (quantified as differences in RTs between incongruent and congruent trials)

between trials with single-trial encoding (readout) higher than the median value of single-trial encoding (readout) computed across

all trials and participants and trials single-trial readout lower than this median value (Figures 3C and 3D; Tables S1–S3). Action probe

was included as predictor to account for any potential biases it may induce.
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Finally, we used GMEM to examine the priming effect in null readout primes using congruency (congruent, incongruent) and zero

readout (zero as determined in Null readout primes; high as above with median split) as categorical predictors and RT in each trial as

dependent variable (Figure S4B; Tables S1–S3).

Logistic Mixed Effects Models (LMEM) for assessing statistical differences in the distribution of binary variables

For assessing the significance of differences in initial fixations (Figures 4B, 4C, and 5A–5D; Tables S1–S3), we used logistic models.

Logistic statistics were used because these quantities are computed from binary stochastic variables in each trial and thus cannot be

assessed with t-tests or other parametric Gaussian statistics. For binary logistic regression, we fit our mixedmodels using a binomial

distribution with a logit link function. Firstly, we considered fixation in the quadrant relevant for the displayed probe. A value of 1 was

assigned if the initial fixation landed on the task-relevant quadrant of the action probe image displayed in that trial, and a value of

0 was assigned if the fixation landed in any of the other 3 quadrants (Figure 4A). Secondly, we considered fixation in the quadrant

relevant for the not displayed probe. A value of 1 was assigned if the initial fixation landed on the task-relevant quadrant of the action

probe image not displayed in that trial, and a value of 0 was assigned if the fixation landed in any of the other 3 quadrants (Figure 4A).

We also used LMEM to assess the significance of trial-level intention discrimination performance (Figure 1E), kinematic discrim-

ination performance (Figure S1B) and readout model performance (Figures 2B and S2D; Tables S1–S3; encoding performance was

not statistically tested as the model had perfect accuracy). For intention discrimination performance we considered single-trial cor-

rect choice (0/1) as the dependent variable and kinematic prime (drinking, pouring) as a categorical predictor. For readout model per-

formance we considered single-trial correct prediction (0/1) as the dependent variable and kinematic prime (drinking, pouring) as

a categorical predictor. For kinematic discrimination performance we considered single-trial correct choice (0/1) as the dependent

variable but included no fixed effects, only participant specific random intercepts.

LMEM were implemented using the glmer function from the R package ‘‘lme4’’49 (https://cran.r-project.org/web/packages/lme4/

index.html, 1.1-27.1).

Cumulative Link Mixed Model (CLMM) for assessing statistical differences in the distribution of ordinal data

Confidence rating by participants in the intention discrimination task are ordinal data. To examine the dependence of confidence rat-

ing on single-intention encoding (readout) (Figures 2F and S2E), we fit a CLMMwith a logit link function, using the function clmm from

the R package ‘‘ordinal’’ (https://CRAN.R-project.org/package=ordinal, 2019.12-10). We used the model to estimate the probability

of each confidence rating for different values of single-trial intention encoding (readout). Prior to fitting the model, we collapsed con-

fidence ratings 1 and 2, as these levels had much fewer responses. This was expected based on the relative high performance in the

intention discrimination task (Figure 1E).

Mixed Model Fixed Effects

The significance of all fixed effectswas assessedby conducting likelihood-ratio tests (LRT) betweenmixedmodels differing only in the

presence or absence of the given predictor. Interactions were examined using the R package ‘‘emmeans’’ (https://CRAN.R-project.

org/package=emmeans, 1.7.2), which provides post-hoc estimates of slopes for interactions in linear models and estimates of mar-

ginal means for predicted probabilities in logistic models. In logistic models the magnitude of the effect associated with a specific

explanatory variable is not a constant value on the probability scale and the significance of product term coefficients does not guar-

antee the significance of interaction effects.51–53We thusquantified the size of the effects of interest by computing the predicted prob-

abilities from the LMEMs of each independent variable in the interaction across all values of the other. We then computed the signif-

icance of the interaction effects on the probability scale by testing the equality of the marginal effects using a Wald test.

Mixed Model Random Effects

To determine the random-effects structure best supported by the data, we began with the minimum model that would account for

non-independence of measurements, intercept only random effects for participant and kinematic prime (1|participant+1|prime), and

incrementally added predictors. For establishing kinematic priming, we considered random participant slopes for action probe inten-

tion and kinematic prime intention and random prime slopes for action probe intention. We evaluated the model using all possible

combinations of intercepts only/slopes and then ranked themodel performance based on BIC. As final model, we selected themodel

with the lowest BIC that achieved convergence and for which all lower order models (with single term deletions) also converged so

that we could use LRT to assess the significance of the effects. To examine the effect of encoding (readout) of intention information on

kinematic priming, we included single-trial intention encoding (readout) for trends or encoding (readout) level (for categorical), along

with congruency and probe intention, as candidate slopes for participants and probe intention as potential slope for the prime

random effect. The final model used in each case is described in Table S2.

Significance of correlations

The significance of correlation values was assessed using the R cor.test function, with two-sided parametric Student’s t statistics for

Pearson correlation and the asymptotic t approximation for Spearman correlation.

Conventions for p values

The p values of all reported statistical comparisons are two-sided, and Holm-Bonferroni corrected. Tables S1–S3 report the details of

the Mixed Effects Models: Table S1 provides a summary of likelihood ratio tests for significance of main effects and product terms,

Table S2 provides a summary of model formula and fixed effect coefficients, and Table S3 provides a summary of post-hoc tests of

main effects/trends and interactions. In all Figures, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.
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